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Response of Insulated Electric Field Probes in
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Abstract—An ideal probe for measuring the electric field inside a finite
heterogeneous biological body should possess a coustant calibration factor;
probe effective length and equivalent impedance must therefore be inde-
pendent of its location in the body. A practical probe with minimal
variation of these parameters can be implemented by insulating the
metaliic probe with a thick low-loss dielectric coating of low permittivity.
An idealized spherical probe, insulated by a dielectric layer and immersed
in a finite lossy-dielectric body (representative of more general probes) is
studied. Analytical expressions for the effective diameter and equivalent
impedance of the probe are obtained. Numerical results indicate that the
variation of these parameters with probe location is minimized by coating
the probe with a relatively thick low-permittivity dielectric layer. Experi-
mental impedance and electric field measurements confirm this conclusion.
Limitation of using this probe in biological media with low dielectric
constants is discussed.

1. INTRODUCTION

O ACCURATELY ASSESS the potential biological

hazard associated with electromagnetic (EM) radia-
tion, it is necessary to determine the EM field induced
inside a finite biological body or a phantom model of that
body [1]-[3]. Electric field probes are frequently used in
bioeffects research to measure the field excited in a finite
heterogeneous biological body due to its interaction with
a (generally nonuniform) impressed EM field [4]-[9]. The
response of an ideal probe is proportional to the induced
E field at its location in the body and independent of any
body inhomogeneity, i.e., its calibration factor does not
depend upon finite body dimensions or local variations of
its electrical parameters. The properties of an insulated
antenna in an unbounded lossy medium have also been
studied [10].

It has been demonstrated [7] that the equivalent circuit
parameters (calibration factors) of practical probes in
general vary with the location of the probe in a finite
heterogeneous biological body. The probe effective length
can be strongly influenced by body permittivity and con-
ductivity at its location, while the probe equivalent imped-
ance is sensitive to both finite body dimensions and
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electrical heterogeneity. Calibration factor variations re-
sulting from these location-dependent equivalent circuit
parameters have been identified [7] as the cause for dis-
crepancies between theoretically predicted and experimen-
tally measured electric fields as a dipole-type probe ap-
proaches the boundaries of simulated biological boclies
consisting of a finite volume of saline solution. It is the
purpose of this paper to demonstrate that these location-
dependent probe parameter variations can be reduced by
insulating the metallic probe with a thick coating of
low-permittivity dielectric.

In the interest of obtaining relatively simple, but gener-
ally representative closed-form results, an idealized spheri-
cal metallic probe insulated by a dielectric layer and
immersed in a finite lossy-dielectric biological body (each
spherical and concentric with the probe) is studied. Ana-
lytical expressions for the effective diameter 4, and
equivalent impedance Z,, of the probe are determined in
terms of the radii and electrical parameters of the insulat-
ing layer and the finite body. Theoretically predicted
impedances Z., compare will with experimentally
measured values. Numerical results are presented from
which it is concluded that variations of probe equivalent
circuit parameters d; and Z., (calibration factor) are
minimized by coating the probe with a relatively thick
insulating layer of low permittivity. Comparison of theo-
retically calculated induced power density distributions
with those measured by an insulated spherical probe im-
mersed in a finite volume of saline solution display excel-
lent agreement at all locations in the solution. This corre-
spondence confirms the above conclusions regarding the
relative calibration factor constancy for the insulated
probe.

In this study, it was found that an implantable electric
field probe may not perform well in biological tissues with
low dielectric constants.

II. DECOMPOSITION INTO SCATTERING AND
RADIATING MODES—PROBE EQUIVALENT CIRCUIT

The geometrical configuration of the insulated spherical
probe is indicated in Figs. 1(a) and (b). A metallic sphere
of radius g is centered at the origin of spherical coordi-
nates and loaded by impedance Z across an equatorial
gap (angular width 26, as shown in Fig. 7) at 8= /2. The
probe is insulated by a concentric spherical dielectric

0018-9480/78 /0800-0599$00.75 © 1978 IEEE



600

eve@@ﬁé’re

radiating mode

scattering mode

@
Zeq
+ Veq ='®
) i
©

Fig. 1. Configuration of insulated spherical probe, modal decomposi-
tion, equivalent circuit. (a) Decomposition of probe receiving mode
into superposition of scattering and radiating modes. (b) Detail of
loaded insulated probe. (c) Probe equivalent circuit.

receiving mode o0

layer (region 1: a<r<b: ¢, 0,=0) of radius b and im-
mersed in a concentric spherical biological body (region
2: b<r<c; €, 0,) of finite radius c. The biological body is
immersed in free space (region 3: ¢ <r < c0; €;= ¢y, a;=0).
Each region is nonmagnetic with p= p,.

It is assumed that the field to be measured in the body
at the location of the probe is EO Impressed field E0 is

E0=2E0=fE0 cos §— G E, sin § (1

and this field excites surface current K=0K, on the
metallic sphere; it follows from Maxwell’s equations that
the EM field in each of the three regions (/=1,2,3) takes
the form

E(r,0)=FE,(r,0)+0E,(r,0)

Hl(r’0)=¢Hl¢(r’0)- (2)
The response of the probe in its receiving mode can be
decomposed into the superposition of a scattering mode
and a radiating mode as indicated in Fig. 1(a). Total
surface current excited on the metallic sphere can be
expressed as

K, (0)=K;(0)+K;(6) 3)

while tangential components of total EM fields in each
region take the form

Ey(r,0)=Ep(r,0)+ Ep(r,0)

H,¢(r,0)=H,fp(r,0)+H,;(r,0) )]
where superscripts s and » designate the scattering and
radiating modes, respectively. Field E, in the body, which
excites the probe, is presumed known and the EM field
scattered by the metallic sphere attenuates rapidly in the
semiconducting body; to obtain a tractable solution, it is
therefore assumed for the scattering mode that the bio-
logical body is of infinite extent. Effects of finite body
dimensions (on probe impedance) are retained for the
radiating mode.
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With an assumed e/’ harmonic time dependence,
Maxwell’s equations lead to a wave equation for the
magnetic field in each region as

VXV X HP —k*HFP =0 (5)
where /=1,2,3 designates the various regions and p=s,r
designates fields of the scattering and radiating modes
with

k;=wV peé =wavenumber in /th region

m="V /& =wave impedance in /th region

§=¢ —jo,/w=equivalent complex permittivity of /th
region.

Solutions to wave equation (5) for the magnetic field can
be constructed as spherical eigenmode expansions [11];
electric fields Ef are subsequently obtained from
Maxwell’s equations such that tangential EM field compo-
nents are expressed in the form

0

Hf(r,0)= 2 [Hppy (r)+ Hf (r)] pa(cos 0)

n=1

0

Ejp(r0) = 2 [Z,;(nH(r)-Z,

n=1

v (VH, (r) ] py(cos 0)

(6)
where p! is the associated Legendre function and
+ HZ 1/2(k1’) H,Y 1/2(k1’)
Hfg (r )————, Hi, (r )—————
V ki Vikr
()
Zy (r) =]’711‘ —*‘Hn(z_)l/Z(klr) - =
’ I HZ\ akyr) kir ]
[H® o(kr)  n ]
Z, (r)y=jmg| ———=——|. 8
n (r) ]”71> Hrgi»)l/2(k1r) ko ] ®

H®Y, »2 and H®?, ,2 are Hankel functions with complex
argument [12] while 4/, and B}, are unknown mode ampli-
tude coefficients to be evaluated using appropriate
boundary conditions for tangential field components of
scattering and radiating modes (p=s,r) at interface
surfaces between media in the three regions (/=1,2,3).
Hf,y and Hf, are outgoing and incoming spherical
waves, respectively, while Z,7 and Z,, are corresponding
TM wave impedances.

Details of field solutions for the scattering and radiating
modes are subsequently presented in Sections IIT and IV.
Currents of the two modes induced on the surface of the
metallic sphere are superposed here to obtain equivalent
circuit parameters describing the insulated probe. Total
induced surface current is, from (3), K,(8)=K;(8)+
K; (), evaluating at § = 7 /2 and multiplying by 27a leads
to a relation in terms of total currents at the probe
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I with

I=2naK,(n/2)=~

terminals in the form I=I*—

=load current in receiving probe,
=2naK;(w/2)=2maY (7 /2)E,
=total current in scattering mode,

= —2maKj(n/2)= Zl

m
=input current to radiating mode

where K;(8)= E,Y(9) as developed in Section III and Z;
is the input impedance to the radiating mode as expressed
in Section IV. The above expressions lead to

17
> ©)

m

I=27aY (7w /2)E,~

which is solved for load current I and expressed in the
form

I Veq (10)
ZotZ
where
Veq=2maY(m/2)ZiEy= — D E,
=equivalent probe voltage (11)
Z.,= Z,,=equivalent probe impedance. (12)

Expressions for Y(#) and Z,, are developed in Sections I11
and IV (equations (19) and (26)). D is the effective
probe diameter such that V., = — DE, and can be ex-
pressed in normalized form as

- Deff — Veq —
deff_ 2a - 2aE0 = —WzinY(W/z)

=normalized effective diameter.

(13)
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II1. FIELDS OF SCATTERING MODE—EFFECTIVE
DIAMETER

In the scattering mode of Fig. 1(a), the biological body
recedes to infinite radius and only regions 1 and 2 (insula-
tion and body) are present. Appropriate boundary condi-
tions on tangential EM fields in these regions are Ej,(r=
a)=0, Ejy(r=>5b)=Ej(r=»5b)—E, sin 8, Hj,
(r=b)=H;,(r=>b), and Ej;(r—o0)=0. Applying these
boundary conditions with the fields of (6) and exploiting
orthogonality of the Legendre functions leads to the sys-
tem of algebraic equations

Zl-;(a)Hl.ﬁn(a)-Zl;(a)Hip_n(a):O

2¢n(b)

Zl:(b)leﬁn(b) Zln(b)H1¢n(b) Zzt(b)stq;:(b) E, 'Sln
(15)

for n=12,,---, oo where 8, is the Kronecker 8-function
and coeff1c1ents ;. Bi, and A3, are the unknown quan-
tities in this system. Nonzero solutions are obtained only
for n=1, ie. the uniform impressed electric field E,
excites only the first-order scattering mode in the probe-
body system. If the coefficients are normalized to E,, then
the magnetic field at the surface of the metallic sphere can
be expressed as

Hi; (b)+ Hi,, (b)=

H k H{)(k
Hi,(0,0)=Ey| a 3/2( 19) s 3(kya) sin @
Vka Vka
(16)

where af, and bj, are normalized solutions to the system
(15) with n=1; these are obtained as

. Vb

11_[

1(0)+Z,(b) ] H;

dy is, in general, a complex parameter; numerical results
for small probes indicate that d ;~0.5. Equation (10)
clearly leads to the probe equivalent circuit of Fig. 1(c)
with parameters V,, and Z,,.

Probe response (induced voltage across load impedance
Z) is specified by

V=ZI=KE,
ZD eff . . ..
K=— Zeq+ Z =probe calibration coefficient. (14)
Note that Z,,=Z;, of the radiating mode. Clearly, if

probe cahbratlon factor K is to be independent of probe
location in a finite heterogeneous body, then variations of
D and Z,, should be minimized. Extensive numerical
results and experimental measurements for Dy and Z,
are presented and compared in Section V.

{Jhkib)+ [ Z31 (b) - Z11 (b) | @) H{7h (K1)

ay, = a(a)bj,

a(a)= Zl_l(a)H3/1%(k a)
Z(a)HP(ka)

(17)

The surface current of the scattering mode which is
excited on the metallic sphere is K*=7ixH ir=a)=
6H 15(a,0) which leads to

Kj(0)=EY(9) (18)

where
H(ka) . Hij(ka) |

Vka " Vka
1 1

Note that Y(#) is dimensionally an admittance function.

Y(8)=—]aj sin 8. (19)
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IV. FIELDS OF RADIATING MODE—EQUIVALENT
IMPEDANCE

A closed-form analytical expression for the input im-
pedance to a dielectric-coated spherical antenna em-
bedded in a finite conducting body is developed in this
section. The configuration of the spherical probe antenna
in this radiating mode is indicated in Fig. 1(a); surface
current Ky is excited on the metallic sphere by potential V'
maintained across an equatorial gap of angular width 26,
atf=m/2.

Appropriate field solutions for this radiating mode are
given by (6) with p=r for each of the three regions
(/=1,2,3). Since region 3 is unbounded free space, then
only an outgoing wave exists in that region and B3, =0.
Five unknown amplitude coefficients (4;, for /=1,2,3
and By, for /=1,2) remain to be determined for each
mode n by application of boundary conditions on tangen-
tial field components. At the surface (r=a) of the con-
ducting sphere, an appropriate boundary condition [13] is
El(r=a*,0)=Ej(r=a",0)=(V/a)é(0—=/2), while at
the dielectric-body and body-vacuum (r=b,¢) inter-
faces, it is required that Efy(r=b)= E},(r=>), H{,(r=>)
=H;,(r+b), Ej(r=c)=Ej(r=c), and Hy(r=c)=
Hj,(r=c). The conventional matrix formulation of this
boundary-value problem was unsuccessful due to numeri-
cal difficulties associated with inversion of nearly singular
matrices and the resulting necessity to compute Hankel
functions of small complex arguments [14] very ac-
curately. An alternative method, based on transmission
line theory, is therefore adopted.

Tangential electric field at the surface of the metallic
sphere is first expanded in a Legendre series as

Ely(a,0)= 2 an;(0050)=—8(0———). (20) 7

n=1

Expansion coefficients F, are evaluated by exploiting the
orthogonality of Legendre functions p,! [12] to obtain

2n+1

l( )2n( +1)° 1

Since p)(0)=0 for even integers n, then the sum in (20)
need be extended only over odd integers n=1,3,1.5,-

co. A system of algebraic equations for the five unknown
amplitude coefficients is obtained by substituting ap-
propriate field solutions for Ej and Hy, from (6) into (20)
as well as the boundary conditions at r=b,c and again
exploiting the orthogonality of the p! functions.

A transmission-line formulation for the solution of this
boundary-value problem is initiated by defining reflection
and transmission coefficients at the interfaces. For exam-
ple, at r=5h

Hign(b)
1¢n(b)

while R,,(c) and T),(c) are defined similarly at r=c¢. Two
additional reflection coefficients are defined at r=a and

2q)n( )
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r=5b as

2¢n( ) 1¢n( )
Hi,,(b) Hi,(a)

Each of these coefficients is an unknown quantity because

H{S, H],, etc., depend upon unknown amplitude coef-
ficients A, and B/,. Products of reflection coefficients,
however, are known; in terms of the spherical wave defi-
nitions these products lead to

R,,(b)= R (a)=—T"= (23)

R ( )R (b) n+1/2(kld)H,$.21/2(k b) 1
12\ @)1, M (K @ (K =K (a,b)
H”+1/2( a)Hn+l/2( b) In
Ry, ()R, (0)= = 2 U I plh)
” - 1/2(k2b)H,f%_)1/2(kzc) K2n(b c)’
(24)

Applying these definitions in the system of equations
arising from enforcing boundary conditions at r=a,b,c,
expressions for R, (b) and R,,(c) are obtained as [14]

O A0)
Rl = BT 025 )
_ Z5(c)=Zs(c)
Rale)= 2 @7 20
0= S EubOROZ5(0)/Z50) 0

1+ K,,(b,c)R,,(c)

where Z}(b), Z,,(b), etc., are the TM wave impedances
defined in (8).

Total radiating-mode input current excited by potential
V at the edge (r=a, §=m/2—0,; see Figs. 1(a) and 7) of
the spherical antenna is evaluated as [13]

=2ma cos 0Ky (0= /2— y)=27a cos H|,(a,7/2— ;)

where Hj, is calculated from field expression (6) using
known values (21) for expansion coefficients F, and rela-
tions (24) and (25) for reflection coefficients. Input admit-
tance to the insulated spherical probe antenna is finally
obtained as

7(2n+1)

(Z )_IE£=C050 i
" 14 0 n(n+1)

n=1

(odd)

. 1+Kln(a’b)Rln(b)

Z ()= Ky, (a,b)R,, (D) Z,,(a)
This expression yields 4.,=Z;, in terms of dimensions
and electrical parameters of the insulated probe and the
finite biological body. Note that R,,(b)=0 for the special
case of a spherical antenna in free space; in this situation,
(26) for the antenna impedance reduces to that given by
Stratton and Chu [11].

Numerical results for Z,, computed from (26) are pre-
sented in the next section. It is important to note that this
value for Z, is actually an “edge” impedance defined at
the surface of the metallic sphere; input impedances are
normally measured, however, at the center (r=0) of a

P(sin 8,) P1(0)

(26)
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Fig. 2. Dependence of magnitude of normalized effective diameter
|d.g| upon relative permittivity €,, of finite low-loss conducting bio-
logical body. (a) Variable parameter is b/a. (b) Variable parameter
is €.

hemispherical antenna excited over a ground screen by a
coaxial line. Edge impedances must therefore be ap-
propriately transformed to the antenna center. Two
methods for effecting this impedance transformation are
described in [14] and are not repeated here.

V. THEORETICAL AND EXPERIMENTAL RESULTS

Representative numerical results, based on expressions
for the effective diameter and equivalent impedance of the
insulated, spherical electric field probe, are presented in
this section. Included in the latter part of the section are
comparisons between theoretical and experimentally
measured impedances as well as experimental measure-
ments of the power density distributions excited in saline
models of finite biological bodies by an impressed plane-
wave field.

Numerical results for the dependence of normalized
effective diameter |d | upon relative permittivity €,, of a
low-loss biological body are indicated in Fig. 2. Probe
radius is ¢=1.0 mm and the frequency is f=2.45 GHz
with remaining parameters specified in the figure. The
parameter is b/a (insulation thickness) in Fig. 2(a), while
€, (insulation permittivity) is the parameter in Fig. 2(b).
As b/a is varied from 1.001 (very thin coating) to 2.0
(relatively thick coating), it is observed that |d.g| becomes
nearly independent of the body dielectric constant when
€,,=10, provided the insulating layer is adequately thick.
It also indicates that |d,| may vary greatly in biological
tissues with dielectric constants lower than 10, such as fat
or bone. Fig. 2(b) indicates that variations of |d.,| with
body permittivity €,, are minimal for the smallest values
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of insulation permittivity €,,~1. Additional numerical
computations show that dg is relatively insensitive to
variations in conductivity o, of the biological body. Il is
concluded that the effective diameter of a probe insulated
by a thick layer of low-permittivity dielectric is minimally
dependent upon electrical parameter variations of the
biological body in which it is immersed if the dielectric
constant of the body is greater than 10.

Numerical results for dependence of insulated spherical
antenna impedance Z.,=Z;, upon dimensions and elec-
trical parameters of the probe and body are presented in
Figs. 3-5. Since the probe is always electrically small, its
resistance R, =R;, is very small relative to its reactance
Xeq=X,,; numerical results for X, are therefore pre-
sented while those for R,, are omitted. Probes of radius
a=1 cm excited at frequency f=600 MHz are considered
in each case (theoretical results compared with experimen-
tal measurements, for which these dimensions and
frequency were convenient, later). Remaining dimensions
and electrical parameters are specified in the figures.

The dependence of X, on radius ¢ of the biological
body is indicated in Fig. 3 as parameter b/a is varied
from 1.1 to 3.0 with fixed insulation permittivity ¢,, =2.1
(e.g., teflon). Lossy-dielectric body parameters are €,, =70
and 0,=0.1 mho/m. It is evident that X, varies strongly
with ¢ for small values of /a but is relatively indepen-
dent of body radius for thick insulation layers. For thin
insulation, equivalent probe reactance X, (and Zed)
changes rapidly and becomes very large, as shown by x°
on the figure, for small values of c¢; this corresponds to a
situation where the probe is located near the boundary of
a finite body. This latter observation explains the *edge
difficulty” reported previously [7] during actual field
measurements inside finite conducting bodies; the prob-
lem is associated with changes in probe calibration coef-
ficient K (14) due to variations of Z, as the probe
approaches a finite body boundary.

The effects of body dielectric constant €,, on X, are
indicated in Fig. 4 with b/a varied as parameter from 1.0
(bare probe) to 3.0. The antenna, insulated by a layer with
€,=2.1, is immersed in a low-loss body of radius ¢=:10
cm and conductivity ¢,=0.01 mmho/m. Considerable
variation of X, with ¢, is evident for thin insulation with
b/a between 1.0 (bare) and 1.1; this variation is signifi-
cantly reduced by use of relatively thick dielectric coat-
ings having /a4 in the range of 1.5 to 3.0. Fig. 5 again
displays the dependence of X, on e,, for the same probe
and low-loss body (0,=1.0 mmho/m) except that the
insulating layer with thickness b/a=1.1 has its dielectric
constant varied as the parameter between ¢,,=1.0 and
€,=10.0. It is observed that larger values ¢;, lead to
greater (percentage) variations in equivalent probe reac-
tance (impedance) throughout the range of permittivities
€,>10. In Figs. 4 and 5, X, was again found to vary
greatly with e,, in the range of ¢, <10. This phenomenon
may limit the applicability of an implantable electric field
probe in biological tissues with low dielectric counstants
such as low-water content tissues. It is concluded that, to
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Fig. 3. Dependence of reactive component of equivalent probe imped-
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implement a probe which is minimally dependent upon
focal electrical parameter variations of the body in which
it is immersed, the probe should be insulated by a dielec-
tric coating having a maximum feasible thickness and a
minimal (near unity) possible dielectric constant.
Numerical results discussed above were obtained prim-
arily for low-loss bodies; variations of d and Z., with
body dimensions and electrical parameters are most
severe for such bodies with small dissipation. Extensive
numerical calculations have indicated, however, that
neither dgy nor Z,, of the insulated spherical probe are
significantly effected by conductivity variations in the
surrounding body. Variations of both resistive and reac-
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conductivity o, of conducting spherical biological body (insulation
thickness as parameter).

tive components of equivalent impedance Z. = R, + /X,
with conductivity o, of the biological body are indicated
in Fig. 6. Radii of the antenna and body are a=1.0 cm
and ¢ =5.0 cm, dielectric constants of insulation and body
are ¢;,=2.1 and ¢,, =50, and the excitation frequency is
f=600 MHz; insulation thickness is varied as the parame-
ter from b/a=1.1 to b/a=2.0. It is noted that, for thick
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insulation coatings, both R, and X,, become relatively
independent of conductivity for the finite body in which
the probe is embedded.

Experimental measurements were made on a metallic
hemispherical antenna excited over a conducting ground
plane by a coaxial transmission system and radiating into
an anechoic chamber as indicated in Fig. 7. Insulation
consists of a concentric hemispherical nylon layer, while
the insulated probe is immersed in a hemispherical
volume of saline solution again located concentric with
the antenna. Input resistance R, = R;, to the electrically
small probe is very small, resulting in high standing-wave
ratios (SWR’s) on the input transmission system; conven-
tional slotted line measurements of Z.=Z, are thus
difficult and relatively inaccurate. The relatively new
E-H probe technique was therefore utilized to implement
Z;, measurements. Ratio V/I at the probe location is
calculated from vector voltimeter measurements of
calibrated E—H probe response; this measured impedance
is finally transformed to the antenna terminals to evaluate
Z,,. Details of the technique have been reported elsewhere
[15].

Theoretical and experimentally measured input reac-
tances X, to a hemispherical antenna of radius a=1.1 cm
embedded in a conducting hemispherical body with radius
¢=5.5 cm are presented in Table 1. The body is modeled
by air, distilled H,O, and saline solutions of varying
normality as indicated. Nylon insulation with dielectric
constant €,~3.0 is utilized with radii of b=1.2, 1.5, and
6.1 cm. Flectrical parameters of the saline were calculated
for frequency f=600 MHz (A,=50 cm) at temperature
T=20°C. Agreement between theoretical reactances and
those measured experimentally is observed to be very
good. Thin coatings, i.e., b=1.21 cm, lead to considerable
variation of reactance X, (and consequently Z ) with
parameters of the medium surrounding the insulated
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TABLEI
THEORETICAL AND EXPERIMENTALLY MEASURED INPUT
REACTANCES X, TO AN INSULATED HEMISPHERICAL ANTENNA
IMMERSED IN A FINITE HEMISPHERICAL EXTERNAL (BIOLOGICAL
BopY) MepIUM (a=1.1 cm, ¢=5.5 cm, f=600 MHz, ¢;,~3.0,

T=20°C)
Xy fohms) Xin {ohms) X,y ©ORiMs)
external rameters - L _
R L =121 cm b= 1.5 cm) b= 3.1 cm)
medtum c -
gz mheim | theory exp theory exp. theory exp
air 1000 -20 99 -19.5 ~19 34 -18.8 -22.54 -22.0
dist. HZO 79 9| 0.095 -9.06 -115 -14.89 -14 6 -2L.59 -21.2
0.5 N saline 70.9| 4.52) -823 -10.1 -14.57 -14.1 ~21.77 -215
1 0N saline 6291 .74 -8.07 -8.0 -14.55 -14 0 -21.75 -21.6
1.5 N saline 56.91 10,8 -8.06 -8.8 -14.55 -14.0 -2L7 <215
2.0N saline 51.0( 13.8 -8.08 -9.2 -14.56 -14.2 2175 -21.5
TABLE I

EXPERIMENTALLY MEASURED INPUT IMPEDANCES TO A DIELECTRIC
COATED HEMISPHERICAL ANTENNA AT VARIOUS LOCATIONS IN A
Frvrre HeMisPHERICAL CONDUCTING Boby (¢=1.1 cm, ¢=5.5

cm, =600 MHz, ¢;,~3.0, ¢,,=77.9, 0,=0.925 mho/m,
T=20°C)

BN 4
conducting body
(0.1 N saline)

free space

cross-sectional view
of antenna model

(cdm) input impedance Z;, {ohms)

b=12cm b=Lécm b=22cm
0.0 1.0 - j10.5 0.8-j16.0 0.5-]19.0

{theory- {theory- {theory

1.0 -?{0. 0 0.2 -rjyl5.6) 0.13-18.5)
26 1.3-14.2 1.0 - j16.6 0.6-319.0
3.3 1.5-15.0 1.0-j16.7 0.7 - j19.0

probe. X, is relatively independent of conducting body
parameters when thick insulation layers, i.e., #=3.1 ¢m,
are utilized. These results are consistent with theoretical
ones discussed earlier.

Experimental measurements of impedance Z,, to the
same insulated spherical probe are presented in Table 1I
when the center of the hemispherical antenna is displaced
by distance d from the conducting-body center. These
results demonstrate the effects of finite body dimensions
and relative probe location upon the equivalent probe
impedance Z,,= Z;,. The finite conducting body consists
of 0.1/ saline solution and impedances are tabulated for
three insulation thicknesses b=1.2, 1.6, and 2.2 cm and
three displacements d=0.0, 2.6, and 3.3 cm. Results of
Table II demonstrate that impedances of the thickly in-
sulated probe are essentially independent of its location: in
the finite body; for this case, the body can be approxi-
mated as infinite in extent. Thin dielectric coatings, how-
ever, lead to significant impedance variations as the probe
is moved about in a finite body.

A spherical probe insulated by a dielectric coating and
loaded by a microwave detector diode was constructed to
implement the measurement of actual power density dis-
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Fig. 8. Comparison of calculated and measured induced power density
(|E.P) distributions at distance below upper surface of rectangular
volume of distilled H,O (geometry as in Fig. 9).
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Fig. 9. Comparison of calculated and measured induced power density
(|E,|») distributions 0.5 cm above the center of a finite volume of
saline solution simulating a biological body.

tributions induced in a finite conducting body by an
impressed plane-wave field. Details are included in [14]
while measured power distributions are compared here
with theoretical predictions in Figs. 8 and 9. Measure-
ments were made at frequency f=600 MHz by a probe
with radii 2=0.5 cm and 5=0.6 cm insulated by a Plexi-
glas layer having €,,~3.0. Fig. 8 indicates the measured
distribution of induced power density (|E|* in decibels)
inside a 16 X 124 c¢m finite volume of distilled H,O as a
function of axial location z. Distance / from the probe
center to the top body surface is varied (/=1, 3, and 5 cm)
as parameter. Theoretical predictions, indicated by dots in
the figure, are obtained by the existing tensor-integral-
equation technique and moment-method numerical solu-
tion [16]. It is noted that, in this theoretical method, the
volume is subdivided into a number of cells and the
induced field is assumed to be constant throughout each
cell. Thus the theoretical results indicated by dots repre-
sent approximately the average values of induced power
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densities inside volume cells, and the theoretical results
are represented by a series of rectangular functions in-
stead of a smooth curve. Similar measurements for the
dependence of induced power density upon axial location
zin a 12X 12X2 cm volume (body model) of 0.1N saline
are indicated in Fig. 9; comparisons with theoretical pre-
dictions are again included. Agreement between theoreti-
cal predictions and experimental measurements is good in
both cases. Minor discrepancies can be attributed to in-
complete convergence of the numerical solution and in-
herent experimental errors associated with relatively large
probe dimensions and its connections with measurement
apparatus. It is important to note that the “edge diffi-
culty” encountered in [7] has been overcome (theory and
experiment agree well at body boundaries) by insulating
the probe with a dielectric layer of adequate thickness.

VI. CoONCLUSION AND DiSCUSSION

Anomalous electric-field probe responses and associ-
ated measured field errors can result due to the depen-
dence of the probe calibration factor upon the location of
the probe in a finite heterogeneous biological body.
Calibration coefficient variations result from the location
dependence of probe effective length and equivalent im-
pedance; these equivalent-circuit parameters can depend
strongly upon local values of the body electrical parame-
ters and the proximity of the probe to finite body
boundaries. It has been demonstrated, both analytically
and experimentally, that an electric field probe with a
relatively constant calibration factor can be implemented
by insulating the metallic probe with a thick dielectric
coating of low permittivity. The effective diameter and
equivalent impedance of a spherical probe become rela-
tively independent of finite size and electrical parameters
of the body in which it is immersed when the insulation-
to-probe diameter ratio exceeds b/aa1.5 with insulation
of dielectric constant ¢, ~2.0. Agreement of actual
measurements for the field distribution in a simulated
finite biological body, obtained using such an insulated
probe, with theoretical predictions confirms this conclu-
sion.

A spherically symmetrical geometry was adapted in the
present study in the interest of obtaining an exact solu-
tion. Only with accurate theoretical results, though based
on an idealized geometry, can general characteristics of an
insulated electric field probe in a finite biological body be
carefully examined. Since the main findings of the present
study are rather geometry independent, it appears that the
results of the present study can be applied to systems
without spherical symmetry. This point was verified by
the experimental study.

The main advantages of using an implantable electric
field probe over a temperature probe are its capability of
measuring a low induced field and its ability of measuring
each component of the induced electric field separately.
However, it also has disadvantages such as the limitation
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of using it in regions with low dielectric constants and the
difficulty of designing an interference-free lead wire sys-
tem for the probe. An implantable electric field probe
with an interference-free lead-wire system has subse-
quently been developed by our laboratory. This informa-
tion will be published in a future paper.
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Heat Potential Distribution in an
Inhomogeneous Spherical Model of a Cranial
Structure Exposed to Microwaves Due to
Loop or Dipole Antennas

ALTUNKAN HIZAL anp YAHYA KEMAL BAYKAL

Abstract—An inhomogeneous spherical model of a 3.3-cm radius cranial
structure is assumed to be placed symmetrically in the near field of a small
loop antenna or am electrical dipole antenna at 3 GHz. The transitions
between the layers are taken to be sharp but sinusoidal. Calculations of the
heat potential are performed using a spherical wave expansion technique in
which linear differential equations are solved for the unknown multipole
coefficients. The results are also compared with the plane-wave excita-
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tions. It is seen that a more uniform distribution of the heat potential
occurs for the dipole antenna excitation which is also similar to the
E-plane distribution in the case of plane-wave excitation. For the loop
excitation, a significant hot spot occurs near the center of the structure.

I. INTRODUCTION

HE PREDICTION of the heat potential distribution
in a cranial structure excited by a microwave radia-
tion is of interest for the purposes of medical treatment
and searching out the radiation hazards. For this purpose,
multilayered spherical models [1], [2] irradiated by a plane
wave have been analyzed. It is found that a nonuniform
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